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ABSTRACT

Estimation of photometric plant phenotypes (e.g., hue, shine, chroma) in field con-
ditions is important for decisions on the expected yield quality, fruit ripeness, and
need for further breeding. Estimating these from images is difficult due to large
variances in lighting conditions, shadows, and sensor properties. We combine the
image and metadata regarding capturing conditions embedded into a network, en-
abling more accurate estimation and transfer between different conditions. Com-
pared to a state-of-the-art deep CNN and a human expert, metadata embedding
improves the estimation of the tomato’s hue and chroma.

1 INTRODUCTION AND MATERIALS

Shine, color, and chroma are important photometric phenotypes to breeders during agricultural cul-
tivation and to growers quantifying the quality of their yield (Castellar et al., 2003} Motonaga et al.,
2013 [Udomkun et al., |2014) because these phenotypes stimulate buyers to consume and enjoy
fruits (Barrett & Anthonl |2008; |Yoshioka & Fukino} [2010), help to determine harvest time during
ripening (Mejia-Torres et al., 2009 [Soltani et al., 2011)), and can be used to predict the color of the
final product (Barrett & Anthon, 2008). Tomatoes, e.g., are known for their vibrant red color (due
to the presence of carotenoid, lycopene, and beta-carotene), and those having a deeper red color
are often more mature, sweeter, and contain more lycopenes (Barrett & Anthon, 2008). Here, we
focus on hue and chroma, both of which are related to color perception. The former measures the
combination of the fundamental (unique) colors as interpreted by our brain (Naik & Murthyl |[2003),
and the latter measures how different from gray an object’s color appears to be (Fairchild, 2013).

Measuring photometric phenotypes, e.g., hue and shine, in fruits manually by human experts is time-
consuming, expensive, and subjective, raising doubts on its reliability (Li et al., 2014} Yoshioka &
Fukino, [2010). In contrast, the use of instrumental measurements, e.g., Maxwell’s spinning disk
or a photo-box (Barrett & Anthon), [2008) is fast, cheap, and objective (Fig. [[(a)). But because
phenotyping using a photo-box requires picking the fruit, it is limited to a small number of fruits.

A solution is to measure these phenotypes from images, and indeed, recently, several agricultural
phenotyping tasks based on computer vision have been proposed, e.g., fruit/leaf counting, mutant
or stress classification, and growth rate and age estimation (Kamilaris & Prenafeta-Boldu, [2018;; L1
et al., |2014; Rousseau et al., 2013} [Song et al., 2014; [Ubbens & Stavness, 2017} |Vit et al., [2019).
However, regarding photometric phenotyping, major confounding/intervening factors, e.g., environ-
mental (and specifically lighting) conditions (e.g., season, part of the day, clouds) and the camera
used, diversify such phenotyping in the image (Nakazato et all 2008) (Fig.[I(b)}-[I(e)).

We propose the metadata embedding for photometric phenotyping (MEPP) method to cope with
the influence of environmental conditions on photometric agricultural phenotypes by embedding
metadata about the environment (e.g., lighting condition and camera characteristics) into a deep
neural network (DNN). The MEPP enables (1) transfer learning over the exponentially increasing
number of metadata variable (unseen/rare) combinations, and (2) standardization of fruit photomet-
ric phenotyping. We demonstrate the MEPP in greenhouse tomato photometric phenotyping of hue



Published as a conference paper at ICLR 2020

and chroma. Our contribution is threefold: (1) a metadata-image combined DNN architecture, (2)
a method to measure photometric phenotypes from images which allows transfer learning between
environmental conditions, and (3) demonstration of photometric phenotyping of tomato hue and
chroma in agricultural images that is superior to a state-of-the-art DNN and the human expert.

We used a dataset collected in a tomato greenhouse of a global leader in the seed industry consisting
of ~ 820 images of ~ 200 tomatoes. Each tomato was photographed on the same date in the
morning, noon, and afternoon, using high- and low-resolution cameras (attached to each other to
maintain the same acquisition conditions), and in direct sun and in shadow (most tomatoes could
not be photographed in all conditions). Along the experiment, we kept fixed the cameras’ angles
and exposure of the high resolution camera (that of the low resolution camera did not support that).
The lighting condition was measured for each image using a light sensor (PixelSensor’ ™) that
was positioned on one of the cameras. After completing the experiment, and on the same day, the
tomatoes were harvested and evaluated by a breeder expert and, independently, their hue and chroma
were measured using a photo-box. Overall, each of the 820 single-object tomato images had photo-
box-based labels for hue and chroma and was associated with the metadata variables: (1) Camera
(high/low resolution), (2) Part of Day (morning/noon/afternoon), (3) Light sensor (a continuous
value), (4) Direct sun/shadow, and (5) Plant type (regular/cherry).

2 THE PROPOSED MEPP ARCHITECTURE

Our proposed MEPP architecture to predict photometric phenotypes embeds metadata into a DNN,
and thereby allows photometric phenotype prediction based on both image measurements and
knowledge about the capture/environmental conditions. Embedding promotes transfer learning by
which, although the number of metadata variable combinations increases exponentially with the
number of variables, the MEPP can predict even for a combination unseen before.

Our proposed MEPP architecture is shown in Fig. 2(a). We used the Inception V3 (Szegedy et al.
2016) after replacing its top layer (with 1,000 neurons for ImageNet) with a dense representation
layer of 200 neurons [a]. Each metadata variable is fed into an embedding weight matrix [b] after it
was one-hot encoded [c]. The output of each matrix is a vector [d] of 40/60 neurons depending on
the original variable cardinality. Vectors for all metadata variables and the 200 (dense layer) neurons
are then concatenated [e] before being fully connected into another dense layer of 256 neurons [f].
The network output is either a single neuron, when the network regresses on a single continuous
photometric phenotype, or multiple neurons, when the network solves a multiclass or multitarget
classification task. In the latter task, the model minimizes the loss of all targets simultaneously.

The metadata variables are not directly connected to the network, but through embedding matrices
[b] with each transforming the variable low dimensional representation into a high one. This pro-
vides approximately the same dimension to the representations based on the metadata and topless
Inception before the concatenation stage [e]. Each embedding network [g] consists of two fully
connected layers. The first layer is responsible for the dimension transformation, and the second
promotes non-linearity. For example, to transform a meta variable of dimension a to size b (which
is approximately the dense layer dimension, 200, divided by the number of meta variables), the em-
bedding weight matrix will be of size a x b. Finally, we use log-loss (cross-entropy) and [ loss
functions for discrete and continuous photometric phenotypes, respectively.
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Figure 1: (a) Expert-grower estimation vs. photo-box hue values for ~ 200 tomatoes reveal only 0.56 correla-
tion. Images of the same tomato taken by the same camera on the same day at noon (b) and in the morning (c),
and images of the same tomato taken on the same day and hour by two different cameras (d) and (e).
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(a): Our proposed MEPP architecture. (c) Feature importance

Figure 2: (a) MEPP architecture. (b) Learning curves for the MEPP (solid line) and regular DNN (dashed line)
in hue prediction, measured by accuracy (multiclass classification) and MAE (regression). (c) Feature impor-
tance for hue ranges from best (green) to worst (red) according to each performance measure (see SectionE[).

3 EVALUATION

First, we randomly split the dataset into training (80%) and test (20%) tomatoes. We split based on
tomatoes and not images in order to avoid the situation in which images of the same tomato (taken,
e.g., by different cameras or in different parts of the day) exist in both the training and test sets,
soliciting the DNNSs to learn other than the tomato photometric properties. Second, although our
two target variables, hue and chroma, are continuous, their physical ranges are limited in our data,
22-31 and 37-52, respectively, and thus, in addition to consider regression, we discretized each
target variable to three equal-width bins and considered also multi (three-) class classification.

To demonstrate the advantage of the MEPP, we conducted a series of experiments that compare it
to an Inception V3 DNN that does not use image metadata. Four models were built for the two
target variables used in regression and (multiclass) classification, and a fifth model was built for
multi (two-) target classification for the simultaneous classification of hue and chroma. In the latter
model, the output layer is a concatenation of both targets, e.g., for simultaneous classification of
a tomato to the second hue state ([0,1,0]) and first chroma state ([1,0,0]), the concatenated output
is {0,1,0,1,0,0}. The motivation for the multitarget (not to confuse with multilabel classification, a
special case of multitarget (Read et al., |2016)) is to utilize the dependency between the two target
variables in order to predict them simultaneously.

Training of both DNNs used 200 epochs and a batch size of 20 (both were selected experimentally).
Evaluation under regression is using the mean absolute error (MAE), i.e., the L1 loss, which gives
a good sense of how far the predictions are from the true value (Leon et al.| [2006), and that under
classification is using the accuracy (ACC) and F1 measures (precision and recall computation for F1
is of a class versus the other two classes, averaged over all classes). In each experiment, we used 10
data permutations and report on the average results.

4 RESULTS

Table [T| summarizes classification results for the hue (H) and chroma (C) phenotypes as multiclass
(3 classes) and multitarget (6 classes) functions of the regular DNN and MEPP with respect to ac-
curacy (ACCQ), F1, and lifts (the ratios between the MEPP and regular DNN) for these performance
measures. The table also provides results for a Naive (baseline) classifier that assigns all samples to
the majority class, and since this class is represented in probabilities of 49.7% (H) and 74.3% (C),
this approach is accurate in these probabilities. In addition, Table [T] shows the performance of an
expert breeder (Human) for the hue phenotype (human experts are not trained to percept chroma).
This performance is evaluated by comparing the breeder decision on “color” to that measured by the
photo-box, which provides the true label in our experiments (both decisions are one of nine levels).
Table [T) revels that: (1) the MEPP is always superior to the regular DNN regardless of the pheno-
type measured, target function, and performance measure (this is reflected in the always positive
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Table 1: The MEPP and regular DNN performances for the multiclass and multitarget hue (H) and chroma (C)
phenotype representations. A bold value indicates the highest value of a measure for a phenotype.

ACC (%) F1
Multiclass Multitarget Naive Human Multiclass Multitarget Human
DNN MEPP Lift DNN MEPP Lift DNN MEPP Lift DNN MEPP Lift
H 54.7 59.5 8.8 554 61.3 10.6 49.7 554 0.38 0.44 15.8 0.39 0.49 25.6 0.38
C 75.1 71.5 32 73.8 78.0 5.7 74.3 - 0.43 0.51 18.6 0.45 0.52 15.6

lifts). This superiority is especially vivid regarding F1, which reflects also the specific advantage of
MEPP with respect to classification of the minor (hue/chroma) classes. A non-parametric Wilcoxson
signed rank test (Demsar, 2006) with a 0.05 confidence level shows that the differences in F1 be-
tween the DNN architectures regarding hue and chroma are statistically significant; 2) the MEPP is
always superior to the human expert and the naive approach regardless of the phenotype measured,
target function, and performance measure. A non-parametric Wilcoxson signed rank test shows
this superiority is statistically significant with respect to hue and F1; and (3) while for the regular
DNN, the performances achieved for the multitarget function are not always better than those for
the multiclass, the MEPP multitarget performance outperforms that for multiclass, indicating better
exploitation of the metadata by the MEPP when phenotyping is cast as a multitarget problem.

Regarding regression, the MEPP was superior to the regular DNN for both hue (MAE of 1.07 vs.
1.42) and chroma (MAE of 1.12 vs. 1.47), whereas the human-expert error for hue was 1.20 (and
unspecified for chroma, again, because it cannot be measured by humans).

Then we checked learning curves for multiclass classification and regression to examine differences
with respect to speed of learning and sensitivity to the sample size between the two DNN archi-
tectures, with and without metadata. We fixed the test set (180 images), and sampled (from the
remaining 640 tomato images) training sets of 100, 280, 460, and 640 images. For each training set,
we trained the MEPP and regular DNNSs to predict hue and chroma and tested them on the same test
set of 180 tomato images. Fig.[2(b)]shows that for hue, as the (training) sample size increases, the
MAE decreases and the ACC increases. Interestingly, the ultimate MEPP MAE value is achieved
already for a small sample size and is almost insensitive to the sample size, whereas, while the
regular DNN errors for small sample sizes, it makes fewer errors as the size increases, until, for a
relatively large sample, the two architectures are almost similar. That is, regarding regression, the
use of metadata in hue phenotyping is advantageous especially for samples that are not large. With
respect to multiclass classification accuracy, both the MEPP and regular DNN architectures improve
performance with the sample size, where the advantage of the former over the latter is kept almost
fixed for all sizes.

Finally, to measure the importance of each metadata variable, we exercised an ablation study, i.e.,
the performance was calculated where metadata variables are alternately removed. The variable,
once removed, yielded the highest increase in accuracy/F1 or the highest decrease in MAE was
the most important according to this measure. Fig. shows the hue importance map with the
impact of each missing metadata variable on the multiclass classification accuracy and F1 (upper
two rows) and regression MAE (lower row). The value in each cell is the reduction (ACC/F1) or
increase (MAE) compared to the baseline model that uses all the metadata variables. For example,
3.5% for Camera and ACC in Fig. stands for a 3.5% reduction in accuracy when removing
the "Camera” metadata variable. We can see that the results are consistent, i.e., the importance
order of the variables remains the same for the three performance measures, and Part of the day and
Plant type are the most important features in classifying hue in the images (although not shown, the
chroma had a similar ranking).

5 SUMMARY AND FUTURE WORK

In this paper, we demonstrated that metadata embedded into a DNN improves agricultural image
photometric phenotyping. Currently, this task is accomplished by human experts or in a laboratory
using a dedicated photo-box that requires picking the measured fruits. To the best of our knowledge,
this is the first attempt to estimate agricultural photometric phenotypes based on field-condition
images. Our MEPP DNN architecture outperformed its (Inception V3) counterpart DNN and the
human expert in predicting two photometric phenotypes of tomatoes. Another advantage of our pro-
posed method is that MEPP can use metadata collected automatically and effortlessly, e.g., using
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a camera’s built-in clock, open-source weather datasets, and light sensors mounted on the camera
indicating on the season, day, time of the day, and cloud coverage (some or all of them), all affect-
ing photometric phenotyping. Future research should concentrate on expanding the experiments to
other crops in which photometric phenotypes are important, extending the study to additional photo-
metric phenotypes, and developing methods to automatically extract environmental conditions, e.g.,
whether a fruit is in direct sun or shadow using dedicated detectors.
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